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ABSTRACT: 

 

Spatial information on mire biotypes would be an asset in inventorying mires for protection purposes and in monitoring changes in 

mire diversity caused by artificial regulation of mire hydrology, atmospheric deposition, and global change. We took a data-driven 

approach to explore the potential of airborne imaging spectroscopy data in determining plant communities of pristine treeless 

northern boreal mires in Finland (65˚57’N, 24˚29’E). It was hypothesized that plant species distribution and soil nutrient regimes are 

determining factors in spectral reflectance of mires, thus mires could be classified in several plant associations from medium 

resolution (5 m) imaging spectroscopic data. The objective was to discover the optimal ecological meaningful mire class number for 

our remotely sensed dataset. Minimum noise fraction transformation of geocoded and atmospherically corrected hyperspectral 

HyMap data (437-2485 nm) was subjected to non-metric multidimensional scaling (NMDS) and unsupervised neural networks. The 

performance was tested against a field inventory of plant species, dielectric (ε) measurements of soil water content and electrical 

conductivity (σ) of soil nutrient regimes. NMDS ordination revealed nutrient-poor Sphagnum fuscum bogs with abundance of 

Sphagnum fuscum, Rubus chamaemorus, Empetrum nigrum and Vaccinium uliginosum to be associated with high NIR and NDVI, 

and spectrally deviate from nutrient-rich sedge fens with Betula nana, Carex lasiocarpa, Carex sp., litter and Menyanthes trifoliata. 

The NMDS also indicates that Sphagnum angustifolium, S. lindenbergii and S. papillosum dominated low sedge fens could be 

distinguished separately by spectral data. Classification to seven classes with Kohonen’s self organizing maps (SOM) outperformed 

the fuzzy neural networks and k-means clustering producing the highest separability of classes in plant species coverages. The SOM 

classes were combined to produce a three class (‘nutrient-poor Sphagnum fuscum bog’, ‘nutrient rich sedge fen’ and ‘nutrient-poor 

low sedge fen’) thematic presentation of boreal mires. The study serves as a step towards an operational mire surface monitoring 

system based on imaging spectroscopic data which further improvement could be geared towards subpixel analysis and scale 

dependency of ecological classification detail in pixel based approaches. 
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1. INTRODUCTION 

Presently, mires are attractive as objects of research since they are storages of green house gasses, major biodiversity reserves and 

under pressure due to exploitation for energy production, chemical industry and horticultural use. Global warming is predicted to 

have impacts on mire hydrology and the resulting changes may act as a major triggering mechanism of greenhouse gas release. 

Pristine mires preserve many rare and endangered species thus potential further protection should focus on the most nutrient- and 

species-rich sites (Aapala, 2001). Mapping of surface properties, including soil water and nutrient regimes and plant species 

distribution on pristine mires, would be desired from the perspectives of conservation, modelling carbon cycling globally and 

inventorying mire biodiversity. Such extensive wetland inventory or monitoring data is presently not yet available nationwide.  

 

Remote sensing could serve as a tool for peatland classification and monitoring. Usability of remotely sensed data in wetland 

research has already been demonstrated through research involving interpretation of aerial photographs (e.g. Tuominen and Aapala, 

2001), coarse resolution optical satellite data (e.g. Bronge and Näslund-Landenmark, 2002) and imaging satellite radar (e.g. Grenier 

et al., 2007). Classification success is mainly determined by the level of classification detail (number of classes and their ecological 

description) a certain scale data set is processed to. Mineral soil can be well (80-90% accuracies) distinguished from peatlands by 

Landsat TM, Landsat MSS, NOAA AVHRR and aerogeophysical data (Lahti and Häme, 1992), through a combination of digitized 

aerial photographs and Landsat TM (Holopainen and Jauhiainen, 1999; Xinglai and Sheng, 2005), and by Landsat ETM+ (Haapanen 

and Tokola, 2007). When the number of classes increases to mire site type level or to higher number of biotopes, and higher 

resolution data such as digitized aerial photographs, airborne hyperspectral imaging spectroscopy and satellite SPOT data is used 

classification accuracies decrease (60-80% overall accuracies; Grenier et al., 2008; Xinglai and Sheng, 2005; Arkimaa et al., 2005). 

Deckha et al. (2002) discovered that processing of Ikonos-2 into wetland assemblages with a broad wetland classes produced lower 

accuracies than a more detailed vegetation community level classification. This leads one to think that each dataset, based on their 

spectral, spatial and temporal resolution has an optimal class level when pixel-based (hard) classifiers are used. The objective of this 

was to study the optimal class hierarchal level which airborne hyperspectral data can be processed to produce vegetation assemblages 



 

that could aid environmental planning and mire inventories. Compared to visible and near-infrared data improved spectral 

segregation of mire plant assemblages is hypothesized to be achieved with hyperspectral data including also the short-wave portion 

of the spectrum. 

 

2. MATERIALS AND METHODS 

2.1 Keminmaa study area 

The study is located in one of the most peatland-rich landscapes of Europe in Perä-Pohjola aapa mire zone (see fig. 2; Ruuhijärvi and 

Hosiaisluoma, 1988). Aapa mires are characterized as a minerotrophic vegetation-ecological mire complex type with a concave 

surface i.e. the centre of the mire is situated lower than the surrounding mineral soil. According to the Geological Survey of Finland 

(GTK) peat resource database, fens (finnish: neva) are the most common mire type in the Keminmaa study area: mesotrophic low-

sedge bogs comprise 41.2% of the GTK inventoried mires, tall-sedge fens 8.8%, flark fens 4.6%, and herb-rich sedge fens 2.7%, 

whereas oligotrophic Sphagnum fuscum bogs cover 26.3% and low-sedge bogs 2.3% (site types according to Laine and Vasander, 

2005).  

 

2.2 Hyperspectral, GIS and field data 

The HyMapTM imaging spectrometer (Cocks et al., 1998, Hyvista Corp., Sydney, Australia) was flown over an area of 1100 km2 in a 

Donier 288 on the 29th of July, 2000, starting at 11.35 am local time. A swath width of 2 km and 5 m spatial resolution were 

achieved with a 60˚field of view, 2.5 mrad along and 2.0 mrad across track instantaneous fields of view, and 278 km/h ground speed 

at 2 km flight altitude. The instrument was programmed to record 126 10-nm-wide bands in 437-2485 nm. 

 

Field data was gathered in 5-by-5-meter sampling plots the locations of which were randomized by creating a 250 m squared point 

grid over the study area. The final plots were chosen on treeless mires (Finnish National Land Survey, NLS, 1:20 000 GIS database) 

within a distance of 500 m from the road network to ensure that they were easily accessible on foot (115 plots). The surface layer ε 

(as a measure of volumetric water content) was measured with an electrical capacitance probing probe (Adek Ltd., Tallin, Estonia) 

and σ (peat water solute content) with a galvanic conductivity fork (Geological Survey of Finland) in each corner and centre of the 

plot similarly to plant species inventory (1 m2 plots). Species coverages were estimated as percentage proportions from above rather 

than bottom and field layers separately in order to better correlate species to remotely sensed data. Values were averaged to represent 

each 5-by-5-m plot and plot centers were located with GPS. Sampling plots with canopy coverage more than 7 % were later 

eliminated from the dataset which resulted in a final sample size of 84 sampling plots. The most common species with maximum 

coverage of 20% or more were subjected to statistical analysis as they can be expected to have significant impact on HyMap spectra. 

 

2.3 Preprocessing, statistical analyses and classification 

Geometric rectification was performed with PARametric GEocoding (versio 1.3, ReSe Applications Schläpfer, Remote Sensing 

laboratories of the University of Zurich, Zurich, Switcherland; Schläpfer, 2001) elevation, position and a high number of tie points 

(> 50 points/ flight stripe) as inputs because attitude data from the initial measurement unit was not available. Atmospheric 

correction and BRDF correction with nadir normalization procedure was done with ATCOR4 (Richter, 2003) with five pseudo 

invariant features as inputs. Stripes were mosaiced as continuous data, and the number of bands was reduced to 109 including 477-

862 nm, 882-1326 nm, 1472-1795 nm and 1999-2432 nm. Data over the study area was extracted from a larger dataset (see Arkimaa 

et al., 2005) and under a mask of treeless mires (according to NLS GIS database). Minimum noise fraction (MNF) bands 1-10 were 

chosen for further analysis because their eigenvalues were greater than five. The MNF and spectral values were extracted from the 

HyMap data under corresponding sample plot locations. 

The NMDS (Kruskal, 1964) is a visualization and data mining technique which explores similarities and dissimilarities in data. We 

analyzed field measured vegetation composition, σ and ε, and HyMap bands and NDVI relative to HyMap MNF bands with NMDS 

using Bray-Curtis dissimilarities (Bray and Curtis, 1957). Significances of the correlations with spectral data were tested with 5000 

permutations. The 5-m MNF bands were also resampled to 10 m pixel size with the nearest neighbour algorithm, and the NMDS 

ordination was set up with both data. The appropriate input MNF bands and pixel size for unsupervised classification were chosen 

based on the NMDS. 

HyMap data was classified with three unsupervised classifiers: k-means clustering implemented in ENVI (Research Systems Inc., 

Boulder, CO, U.S.A.), fuzzy neural networks in GeoXplore (v. 4.1, University of Nevada, Reno, U.S.A.; Looney et a., 2004) 

available as an ArcSDM (Geological Survey of United States, Geological Survey of Canada, Sawatzky, Raines and Bonham-Carter, 

2007) extension in ArcMap (ESRI, Redlands, U.S.A.) and Kohonen’s self organizing maps (SOM; Kohonen, 2001) coded in 

SOMToolbox (Neural Networks Research Centre, Laboratory of Computer and Information Science, Helsinki University of 

Technology) and used with SiroSOM graphical interface (Commonwealth Scientific and Industrial Research Organisation, 

Australia). With each classifier three results having 5, 7 and 9 classes were produced. The classification results were referenced to 

ground observations by calculating mean values of field data within each class. Vegetation differences between classes were 

quantified with multivariate analysis of variance (MANOVA) using Bray-Curtis distance matrices (Bray and Curtis, 1957; Anderson, 

2001) to find the classification which would explain most of the deviation between classes with plant species. The coverages of the 

most common species were used as inputs in MANOVA. The statistical analyses were accomplished in R version 2.8 (R 

Development Core Team 2008) with Vegan version 1.15 (Oksanen et al., 2008). 

 



 

3. RESULTS 

According to the plant species inventory Sphagnum species were the most dominant in the Keminmaa study area having 35.7% mean 

coverage overall (maximum coverage 81%) S. angustifolium being the most common (23.5%) and S. fuscum the second most 

common (9.2%). Carex species are the second most common species group with 7.7% mean coverage followed by Rubus 

chamaemorus (6.7%), Empetrum nigrum (5.9%), litter (5.3%), Betula nana (5.2%) and Menyanthes trifoliata (4.1%). Locally other 

single species can cover up to 78% of a field plot. 

 

The NMDS (fig. 1) showed the following variables to have significant correlations with the MNF ordination: MNF bands 1, 2, 4, 5, 

8-10 (p≤0.05), soil σ (p=0.005), NDVI (p=0.010), spectral bands 539-1793 nm and 2083-2342 nm (p≤0.01), and Betula nana, Carex 

lasiocarpa, Carex sp., Empetrum nigrum, Menyanthes trifoliata, Rubus chamaemorus, Sphagnum fuscum, Sphagnum angustifolium, 

Sphagnum lindbergii, Sphagnum papillosum, Sphagnum spp., Vaccinium uliginosum, litter (p≤0.05). NMDS ordination based the 5 

m pixel size MNF bands had only 3 MNF bands (1, 2 and 10) statistically correlated to it (p≤0.05) whereas 7 were correlated to 

ordination based on 10 m pixel size MNF bands. Thus we chose the 10 m MNF bands 1, 2, 4, 5 and 8-10 for further analyses and 

inputs for unsupervised classification. Two distinct clusters of were found in the MNF based NMDS ordination (fig. 1). Plant species 

Sphagnum fuscum, Rubus chamaemorus, Empetrum nigrum and Vaccinium uliginosum associated with the cluster ‘nutrient poor 

Sphagnum fuscum bog’. This ordination direction was also characterized with high NDVI and spectral bands 723-799 and 1152-

1324 nm. Cluster ‘nutrient-rich sedge fen’ is associated with Betula nana, Carex lasiocarpa, Carex sp., litter, Menyanthes trifoliata 

and soil σ. Sphagnum species S. angustifolium, S. lindenbergii and S. papillosum remain outside of the clusters in the MNF feature 

space. S. angustifolium is associated with HyMap bands in 570-692 nm and 1032-1123 nm. 

 

 
 

Figure 1.  Nonparametric multidimensional scaling shows the illustrated in situ measured plant species coverages, soil electrical 

conductivity (σ), and HyMap calculated NDVI having significant correlation (p≤0.05) with MNF band ordination.  The gray sectors 

represent HyMap spectral bands. Two clear clusters characterized by 1) Sphagnum fuscum, Rubus chamaemorus, Empetrum nigrum 

and Vaccinium uliginosum (cluster ‘nutrient-poor S. fuscum bog’), and 2) Carex lasiocarpa, Carex sp., litter and Menyanthes 

trifoliate (cluster ‘nutrient-rich sedge fen’) can be found. Dots represent the 84 field sampling plots. 

 

According to the MANOVA results, differences in the plant species coverages were greatest in a seven class SOM result because the 

ratio of between classes to within class variation was the greatest (F=9, r2=0.11). K-means (F=8.6-7.3, r2=0.10-0.09) produced 

classes were more separable in species coverages compared to fuzzy neural networks (F=6.6-3.5, r2=0.05-0.08). Overall species 

coverage did not explain the class separation very well because the explained proportion of variances are small (r2= 0.05-0.11). The 

SOM with seven classes was, however, chosen as the most appropriate mire classification. Number of classes was not found a critical 

factor for producing differences in plant species coverages. 

 

Mean values of the in situ determined variables were calculated to assign each class to a thematic class (tab. 1). The seven SOM 

classes were combined based on the statistics as follows: ‘nutrient-poor S. fuscum bog’ (class 1), ‘nutrient-rich sedge fen’ (class 2, 

see high σ in tab. 1) and ‘nutrient-poor low-sedge fen’ (combined class 3). A substantial amount of overlap between the species 

statistics can be observed between many classes (tab. 1). The SOM classes 6, 7 and 2 are the clearest candidates of combined classes 



 

1, 2 and 3, respectively. The combined class 3 is especially heterogeneous being a combination of several Sphagnum species, and 

could be further divided based on Sphagnum species dominance. The thematic map of the classes is presented in figure 2.  

 

SOM class 1 2 3 4 5 6 7 

Combined class 3 3 1 1 2 1 2 

Dielectric permittivity 70 73 65 66 72 65 70 

Electrical conductivity (mS/m) 5.4 5.4 4.3 4.7 7.3 4.2 7.2 

Canopy coverage (%) 0.2 0.0 1.6 1.1 0.4 0.8 1.0 

         Species coverage (%)        

Sphagnum fuscum 5.0 3.5 5.6 5.6 0.3 26 4.5 

Rubus chamaemorus 2.2 5.4 10 7.9 0.5 15 2.4 

Empetrum nigrum 1.0 3.7 9.1 3.5 0.4 16 4.0 

Vaccinium uliginosum 0.5 1.4 10.4 1.7 1.1 4.7 2.0 

        Carex lasiocarpa 0.7 0.0 0.0 5.8 5.0 1.1 8.4 

Carex sp. 9.0 2.4 0.4 7.7 18 1.3 12 

litter 3.0 8.8 1.0 6.1 8.3 3.1 9.9 

Menyanthes trifoliata 8.4 0.0 0.0 3.0 9.1 0.0 3.5 

        Sphagnum papillosum 13 0.0 0.1 2.6 5.0 0.1 7.0 

Sphagnum lindbergii 17 0.0 1.3 7.6 7.1 0.5 0.1 

Sphagnum spp. 54 59 33 41 30 17 31 

Sphagnum angustifolium 24 58 30 30 15 15 19 

 

Table 1.  Mean values of in situ soil dielectric permittivity, soil electrical conductivity, canopy and species coverages calculated 

within seven self organizing map (SOM) classes. Plant species are grouped similarly to the NMDS result in fig. 1. SOM classes are 

combined and named as ‘nutrient-poor Sphagnum fuscum bog’ (1), ‘nutrient-rich sedge fen’ (2) and ‘nutrient-poor low-sedge fen’ 

(3) according to the field data. 

 

4. DISCUSSION 

The NMDS results based on HyMap spectral data demonstrated the feasibility of separating ‘nutrient-poor S. fuscum bogs’ from 

‘nutrient-rich sedge fens’ as two clusters were formed in the MNF ordination (fig. 1). In the NMDS ordination bogs are associated 

with species typical to ‘nutrient-poor S. fuscum bogs’ such as Rubus chamaemorus, Empetrum nigrum and Vaccinium myrtillus. 

‘Nutrient-rich sedge fens’, on the other hand, were composed of an association of Carex lasiocarpa, litter and Menyanthes trifoliata 

in the NMDS ordination, and had high σ indicating nutrient-rich regime. Sphagnum species, besides S. fuscum, did not coincide with 

these clusters which indicated a potential to discriminate S. angustifolium, S. papillosum and S .lindenbergii dominated mires as 

separate classes. In SOM classification, we combined classes dominated by these species as ‘nutrient-poor sedge fens’ but further 

division by S. dominance is also possible (see combined class 3 in tab. 1 and cluster ‘nutrient-poor low-sedge fen’ in fig. 1). The 

class names were given interpreting these plant associations rather than following a common site type classification system. The 

NMDS analysis indicated that at least three but a maximum of five clusters could be spectrally found in the data. We combined the 

seven class SOM into a three class thematic presentation as the seven class SOM had the highest species divergence between classes.  

 

Spectrally S. fuscum bogs were especially associated with high NIR (700-800 nm and 1100-1300 nm) reflectance and high NDVI. S. 

angustifolium fens had high reflectance especially in the visible region (570-700 nm) and in NIR around 1000-1100 nm. Compared 

to other Sphagnum species, S. angustifolium appeared bright green in the study area thus having a high green peak and high 

reflectance also in NIR (Arkimaa et al. 2009). S. fuscum, on the other hand, was red or brown in colour, S. lindenbergii and S. 

papillosum yellowish-brownish green. The spectral properties of Sphagnum species vary between and within species according to 

genetics, light, nutrient and water status (Van Gaalen et al., 2007). Sphagnum as the most common genus in the study area was the 

most controlling factor in the reflectance properties of mires. 

 

As sedge fens were located in an opposite direction in the MNF ordination from S. angustifolium fens and S. fuscum bogs, therefore 

their reflectance values, as well as NDVI, were lower than Sphagnum mires. Fens exhibited higher soil water content than bogs (see 

higher ε in tab. 1), although it did not became statistically significant in the NMDS (p < 0.05, fig. 1). The water table of most fens 

reaches the surface thus absorbing much of the light whereas Sphagnum grows above the water table. The amount of litter produced 

by previous years’ canopy is mainly associated with coverage of Carex lasiocarpa in the NMDS ordination implying that most litter 

is produced by it. Since field observations also supported this result it was certain that the high albedo litter can have a great impact 

on the spectral segregation of sedge fens. 

 

Based on our results we argue that Sphagnum species in the bottom layer form the basis for distinguishing between S. fuscum bogs, 

sedge fens and Sphagnum fens but particularly coverage of sedge, other grasses, herbaceous species and dwarf shrubs in field layer 

determine in what detail subclasses can be determined from bottom-field layer continuum. In pixel-based classification approach the 

level of classification detail is an issue of scale (Mohammed and Malthus, 2007). Although unsupervised pixel-based classifiers 

produced spatial clusters that could be related to species abundances and named as meaningful classes a subpixel approach could be 

more desirable if the distribution of spectrally distinct species were under investigation. From a perspective of medium spatial 

resolution data, individual mire plants and large scale plant associations (e.g. flarks) are too limited in spatial extent to be 

distinguished as clusters of pixels thus in subpixel analysis the abundance of species can be determined within each pixel. Plant 



 

associations which have large enough spatial extent can be mapped by classifying HyMap data. Fuzzy logic type of approach could 

also be logical in this case as plant community variation is continuous. In further studies, inclusion of textural attributes and 

vegetation indices as inputs should also be considered. 

 
Figure 2.  HyMap classification result of treeless pristine mires with SOM draped over a NDVI channel (gray scale, high NDVI = 

light gray). Seven classes (see tab. 1) are combined as three representing ‘nutrient-poor Sphagnum fuscum bog’ (yellow, combined 

class 1), ‘nutrient rich sedge fen’ (blue, class 2) and ‘nutrient-poor low sedge fen’ (green, class 3). 

 

5. CONCLUSIONS 

Of the pristine treeless northern boreal mires, the trophic extremes: nutrient-poor Sphagnum fuscum bogs and nutrient-rich sedge 

fens, could be separated by HyMap data. This classification already can be helpful for conservation planners, people conducting 

ecological mire inventories and even mineral prospectivity. Besides the two endmembers, different Sphagnum species dominated 

mires can be further divided with the unsupervised classification approach. Although the potential of the unsupervised method is 

considerable the applicability of the study is limited by the small aerial extent of our study area and limited number of mire 

complexes in it. To ensure the usefulness of the study in monitoring the artificial regulation of mire hydrology, effect of atmospheric 

emissions and global change in regional studies further investigations on the methodology are needed. 
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